Cell Signaling Technology Logo
1% for the planet logo

SignalSilence® Prolactin Receptor siRNA I #13822

Inquiry Info. # 13822

Please see our recommended alternatives.

    Supporting Data

    REACTIVITY H
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    CST recommends transfection with 100 nM SignalSilence® Prolactin Receptor siRNA I 48 to 72 hours prior to cell lysis. For transfection procedure, follow the protocol provided by the transfection reagent manufacturer. Please feel free to contact CST with any questions on use.

    Each vial contains the equivalent of 100 transfections, which corresponds to a final siRNA concentration of 100 nM per transfection in a 24-well plate with a total volume of 300 μl per well.

    Storage

    Prolactin Receptor siRNA I is supplied in RNAse-free water. Aliquot and store at -20ºC.

    Product Description

    SignalSilence® Prolactin Receptor siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit prolactin receptor expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.

    Quality Control

    Oligonucleotide synthesis is monitored base by base through trityl analysis to ensure appropriate coupling efficiency. The oligo is subsequently purified by affinity-solid phase extraction. The annealed RNA duplex is further analyzed by mass spectrometry to verify the exact composition of the duplex. Each lot is compared to the previous lot by mass spectrometry to ensure maximum lot-to-lot consistency.

    Background

    Prolactin receptor (PRLR) is a single-pass transmembrane receptor that mediates the actions of prolactin, a peptide hormone secreted by the anterior pituitary. PRLR is a type 1 cytokine receptor that is best known for promoting lactation in mammals, but which is also implicated in osmoregulation, metabolism, and immune system function (1). Research studies suggest that PRLR activation may promote tumor growth (2). Prolactin signaling via PRLR can activate multiple signal transduction pathways in breast cancer cells, including the Jak/Stat, PI3K/Akt, and MAPK pathways, leading to both pro-proliferative and anti-apoptotic downstream effects (3,4). Nine isoforms of PRLR have been identified, with the canonical (long) isoform primarily responsible for the pro-oncogenic effects of PRLR in some cancer cell lines (3). Much less is known about the functions of the other prolactin receptor isoforms. Defining the precise role of PRLR in promoting growth of breast cancer and other tumor types remains an area of active investigation (2).
    For Research Use Only. Not for Use in Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    SignalSilence is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.