Cell Signaling Technology Logo
1% for the planet logo
Recombinant Flag
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

Phospho-SQSTM1/p62 (Ser349) (E7M1A) Rabbit mAb (InTraSeq 3' Conjugate 3074) #59131

Filter:
  • SCA

    Supporting Data

    REACTIVITY H M
    SENSITIVITY Endogenous
    MW (kDa)
    Source/Isotype Rabbit IgG
    Application Key:
    • SCA-Single Cell Analysis 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 

    Product Information

    Product Description

    Storage

    Supplied in PBS (pH 7.2), 2 mM EDTA, 0.05% Triton X-100, 2 mg/mL BSA, and 50% glycerol. Store at -20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    Phospho-SQSTM1/p62 (Ser349) (E7M1A) Rabbit mAb (InTraSeq 3' Conjugate 3074) recognizes endogenous levels of SQSTM1/p62 protein only when phosphorylated at Ser349.

    Species Reactivity:

    Human, Mouse

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser349 of human SQSTM1/p62 protein.

    Background

    Sequestosome 1 (SQSTM1, p62) is a ubiquitin binding protein involved in cell signaling, oxidative stress, and autophagy (1-4). It was first identified as a protein that binds to the SH2 domain of p56Lck (5) and independently found to interact with PKCζ (6,7). SQSTM1 was subsequently found to interact with ubiquitin, providing a scaffold for several signaling proteins and triggering degradation of proteins through the proteasome or lysosome (8). Interaction between SQSTM1 and TRAF6 leads to the K63-linked polyubiquitination of TRAF6 and subsequent activation of the NF-κB pathway (9). Protein aggregates formed by SQSTM1 can be degraded by the autophagosome (4,10,11). SQSTM1 binds autophagosomal membrane protein LC3/Atg8, bringing SQSTM1-containing protein aggregates to the autophagosome (12). Lysosomal degradation of autophagosomes leads to a decrease in SQSTM1 levels during autophagy; conversely, autophagy inhibitors stabilize SQSTM1 levels. Studies have demonstrated a link between SQSTM1 and oxidative stress. SQSTM1 interacts with KEAP1, which is a cytoplasmic inhibitor of NRF2, a key transcription factor involved in cellular responses to oxidative stress (3). Thus, accumulation of SQSTM1 can lead to an increase in NRF2 activity.



    Phosphorylation of SQSTM1 at Ser349 (Ser351 in mouse) during oxidative stress increases its binding to KEAP1, thereby increasing NRF2 activity (13).
    For Research Use Only. Not for Use in Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    10x Genomics, 10x, Feature Barcode, and Chromium are the trademarks or registered trademarks of 10x Genomics, Inc.
    CST is a registered trademark of Cell Signaling Technology, Inc.
    InTraSeq is a trademark of Cell Signaling Technology, Inc.
    Subject to patents licensed from 10x Genomics, Inc. for use with single-cell (i.e., Chromium) 10x products.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.