Revision 1

#8660Store at -20C

1 个试剂盒

(7 x 20 microliters)

Cell Signaling Technology

Orders: 877-616-CELL (2355) [email protected]

Support: 877-678-TECH (8324)

Web: [email protected] cellsignal.com

3 Trask LaneDanversMassachusetts01923USA
For Research Use Only. Not for Use in Diagnostic Procedures.
Product Includes Product # Quantity Mol. Wt Isotype/Source
Phospho-AMPKα (Thr172) (40H9) Rabbit mAb 2535 20 µl 62 kDa Rabbit IgG
AMPKα (D5A2) Rabbit mAb 5831 20 µl 62 kDa Rabbit IgG
CBP (D6C5) Rabbit mAb 7389 20 µl 300 kDa Rabbit IgG
GCN5L2 (C26A10) Rabbit mAb 3305 20 µl 94 kDa Rabbit IgG
PPARγ (C26H12) Rabbit mAb 2435 20 µl 53, 57 kDa Rabbit IgG
SirT1 (C14H4) Rabbit mAb 2496 20 µl 120 kDa Rabbit 
RXRα (D6H10) Rabbit mAb 3085 20 µl 53 kDa Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl Goat 

Please visit cellsignal.com for individual component applications, species cross-reactivity, dilutions, protocols, and additional product information.

Description

PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit provides an economical means to evaluate PPARγ and related proteins involved in lipid metabolism. This kit contains enough primary antibody to perform two western blots per primary.

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Background

AMPK is a heterotrimeric complex composed of a catalytic α subunit and regulatory β and γ subunits, each of which is encoded by two or three distinct genes (α1, 2; β1, 2; γ1, 2, 3) (1). The kinase is activated by an elevated AMP/ATP ratio due to cellular and environmental stress, such as heat shock, hypoxia, and ischemia (1). The tumor suppressor LKB1 phosphorylates AMPKα at Thr172 in the activation loop, and this phosphorylation is required for AMPK activation (2-4). Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS (5).
CBP (CREB-binding protein) is a transcriptional co-activator that associates with PPARγ (6,7). CBP also contains histone acetyltransferase (HAT) activity, allowing it to acetylate histones and other proteins (7).
General Control of Amino Acid Synthesis Yeast Homolog Like 2 (GCN5L2) is a transcription adaptor protein and a histone acetyltransferase (HAT) that functions as the catalytic subunit of the STAGA and TFTC transcription coactivator complexes (8). GCN5L2 is 73% homologous to the p300/CBP-associated factor PCAF, another HAT protein found in similar complexes (9). GCN5L2 acetylates non-histone proteins such as the transcription co-activator PGC1-α (10).
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the ligand-activated nuclear receptor superfamily and functions as a transcriptional activator (11). PPARγ is preferentially expressed in adipocytes as well as in vascular smooth muscle cells and macrophage (12).
The Silent Information Regulator (SIR2) family of genes is a highly conserved group of genes that encode nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases, also known as class III histone deacetylases (13). SirT1, the mammalian ortholog of Sir2, is a nuclear protein implicated in the regulation of many cellular processes, including apoptosis, cellular senescence, endocrine signaling, glucose homeostasis, aging, and longevity. Targets of SirT1 include PPARγ (14), and the PPARγ coactivator-1α (PGC-1α) protein (15). Deacetylation of PPARγ and PGC-1α regulates the gluconeogenic/glycolytic pathways in the liver and fat mobilization in white adipocytes in response to fasting (14,15).
The human retinoid X receptors (RXRs) are type-II nuclear hormone receptors encoded by three distinct genes (RXRα, RXRβ, and RXRγ) and bind selectively and with high affinity to the vitamin A derivative, 9-cis-retinoic acid. Nuclear RXRs form heterodimers with PPAR to help regulate transcription during lipid metabolism (16).

  1. Carling, D. (2004) Trends Biochem Sci 29, 18-24.
  2. Hawley, S.A. et al. (1996) J Biol Chem 271, 27879-87.
  3. Lizcano, J.M. et al. (2004) EMBO J 23, 833-43.
  4. Shaw, R.J. et al. (2004) Proc Natl Acad Sci U S A 101, 3329-35.
  5. Hardie, D.G. (2004) J Cell Sci 117, 5479-87.
  6. Goodman, R.H. and Smolik, S. (2000) Genes Dev 14, 1553-77.
  7. Chan, H.M. and La Thangue, N.B. (2001) J Cell Sci 114, 2363-73.
  8. Candau, R. et al. (1996) Mol Cell Biol 16, 593-602.
  9. Yang, X.J. et al. (1996) Nature 382, 319-24.
  10. Lerin, C. et al. (2006) Cell Metab 3, 429-38.
  11. Tontonoz, P. et al. (1995) Curr Opin Genet Dev 5, 571-6.
  12. Rosen, E.D. et al. (1999) Mol Cell 4, 611-7.
  13. Guarente, L. (1999) Nat Genet 23, 281-5.
  14. Picard, F. et al. (2004) Nature 429, 771-6.
  15. Rodgers, J.T. et al. (2005) Nature 434, 113-8.
  16. Gronemeyer, H. et al. (2004) Nat Rev Drug Discov 3, 950-64.

Background References

    Trademarks and Patents

    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.
    All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information.

    限制使用

    除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。

    专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专

    Revision 1
    #8660

    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit

    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 1 Expand Image
    使用 PPARγ (C26H12) Rabbit mAb 对 NIH/3T3 和 3T3-L1 细胞(分化 6 天成为脂肪细胞)的提取物进行蛋白印迹分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 2 Expand Image
    使用 PPARγ (C26H12) Rabbit mAb 对未分化(左)或已分化(右)的 3T3-L1 细胞进行免疫组织化学分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 3 Expand Image
    使用 PPARγ (C26H12) Rabbit mAb 对石蜡包埋的小鼠褐色脂肪进行免疫组织化学分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 4 Expand Image
    使用在分化细胞中显示胞核定位的 PPARγ (C26H12A8) Rabbit mAb(红色)对 3T3-L1 进行共聚焦免疫荧光分析。用 BODIPY 493/503(绿色)标记脂肪滴。蓝色伪彩 = DRAQ5 (DNA 荧光染料)。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 5 Expand Image
    使用 AMPKα (D5A2) Rabbit mAb #5831 对 HeLa 细胞的裂解物 (1 mg/mL) 进行 Simple Western™ 分析。虚拟泳道式图像(左图)显示一抗稀释比例为 1:10 和 1:50 时的靶标条带(如图所示)。对应的电泳图(右图)为一抗稀释比例在 1:10(蓝线)和 1:50(绿线)时沿毛细血管内分子量的化学发光结果。在还原条件下,使用 12-230 kDa 分离模块在 ProteinSimple(BioTechne 品牌)的 Jess™ Simple Western 仪器上进行该实验。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 6 Expand Image
    使用 CBP (D6C5) Rabbit mAb #7389 对 293T 细胞的裂解物 (0.1 mg/mL) 进行 Simple Western™ 分析。虚拟泳道式图像(左图)显示一抗稀释比例为 1:50 和 1:250 时的靶标条带(如图所示)。对应的电泳图(右图)为一抗稀释比例在 1:50(蓝线)和 1:250(绿线)时沿毛细血管内分子量的化学发光结果。在还原条件下,使用 66-440 kDa 分离模块在 ProteinSimple(BioTechne 品牌)的 Jess™ Simple Western 仪器上进行该实验。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 7 Expand Image
    使用 SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005 对未经处理的 HDLM-2 细胞的交联染色质与 PPARγ (C26H12) Rabbit mAb 进行染色质免疫沉淀分析。使用 DNA Library Prep Kit for Illumina (ChIP-seq, CUT&RUN) #56795 制备 DNA 文库。该图显示结合遍及 FOXN3(PPARγ 的已知靶标基因) 。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 8 Expand Image
    使用 SirT1 (C14H4) Rabbit mAb 对不同细胞类型的提取物进行蛋白质印迹分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 9 Expand Image
    使用 Phospho-AMPKα (Thr172) (40H9) Rabbit mAb(上)或 AMPKα Antibody #2532(下),对未经处理或经寡霉素处理 (0.5 µM) 的 C2C12 细胞提取物进行蛋白质印迹分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 10 Expand Image
    使用 RXRα (D6H10) Rabbit mAb 对不同细胞系的提取物进行蛋白质印迹分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 11 Expand Image
    使用 GCN5L2 (C26A10) Rabbit mAb 对不同细胞系提取物进行蛋白质印迹分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 12 Expand Image
    使用 AMPKα (D5A2) Rabbit mAb 对 HeLa、K-562、C6 和 Neuro-2a 细胞的提取物进行蛋白质印迹分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 13 Expand Image
    一抗与靶标蛋白结合之后,与偶联 HRP 的二抗形成复合体。添加 LumiGLO®,在酶催化分解期间发光。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 14 Expand Image
    使用 SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005,对经 Forskolin #3828(30 μM,1 小时)处理的 293 细胞的交联染色质,在加入 CBP (D6C5) Rabbit mAb 后,进行染色质免疫沉淀。使用 DNA Library Prep Kit for Illumina® (ChIP-seq, CUT&RUN) #56795 制备 DNA 库。结果图显示在 NR4A3 内结合,NR4A3 是一种已知的 CBP 靶标基因(参见包含 ChIP-qPCR 数据的其他图形)。欲知其他 ChIP-seq 情况,请下载产品说明书。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 15 Expand Image
    使用 CBP (D6C5) Rabbit mAb(上图)或 GAPDH (D16H11) XP® Rabbit mAb #5174(下图)对对照的 HEK293T 细胞(泳道 1)或 CBP 编码基因出现靶向突变的 HEK293T 细胞(泳道 2)的提取物进行蛋白质印迹分析。突变型 HEK293T 细胞的 CBP 分子量变化证实了抗体对 CBP 的特异性。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 16 Expand Image
    使用 SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005 对未经处理的 HDLM-2 细胞的交联染色质与 PPARγ (C26H12) Rabbit mAb 进行染色质免疫沉淀分析。使用 DNA Library Prep Kit for Illumina (ChIP-seq, CUT&RUN) #56795 制备 DNA 文库。该图显示结合遍及染色体 14(上图),包括 FOXN3( PPARγ 的已知靶标基因)(下图)。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 17 Expand Image
    Western blot analysis of extracts from 293T and C6 cells, untreated (-) or treated with Oligomycin (5uM, 30mins; +) using Phospho-AMPKα (Thr172) (40H9) Rabbit mAb (upper) or AMPKα (D5A2) Rabbit mAb #5831 (lower). Phospho-AMPKα (Thr172) is induced by Oligomycin treatment as expected.
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 18 Expand Image
    使用 RXRα (D6H10) Rabbit mAb (上图)和 DYKDDDDK Tag Antibody (Binds to same epitope as Sigma's Anti-FLAG® M2 Antibody) #2368(下图),对转染空载 (-) 或转染能编码全长人 RXRα (hRXRα; +)、RXRβ (hRXRβ; +) 或 RXRγ (hRXRγ; +) 的带有 Myc/DDK 标签的 cDNA 表达载体的 293T 细胞的提取物进行蛋白质印迹分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 19 Expand Image
    使用 GCN5L2 (C26A10) Rabbit mAb(绿色)对 Hela 细胞进行共聚焦免疫荧光分析。肌动蛋白丝用 DY554 phalloidin(红色)标记。蓝色伪彩 = DRAQ5 (DNA 荧光染料)。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 20 Expand Image
    使用 SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005,对经 Forskolin #3828(30 μM,1 小时)处理的 293 细胞的交联染色质,在加入 CBP (D6C5) Rabbit mAb 后,进行染色质免疫沉淀。使用 DNA Library Prep Kit for Illumina® (ChIP-seq, CUT&RUN) #56795 制备 DNA 库。结果图显示在染色体9(上图)内的结合,包括 CBP 的已知靶标基因 NR4A3(下图)(参见包含 ChIP-qPCR 数据的其他结果图)。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 21 Expand Image
    使用 CBP (D6C5) Rabbit mAb 对不同细胞系提取物进行蛋白质印迹分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 22 Expand Image
    使用 SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005 对 HDLM-2 细胞的交联染色质与 PPARγ (C26H12) Rabbit mAb 或 Normal Rabbit IgG #2729 进行染色质免疫沉淀分析。使用 SimpleChIP® Human FOXN3 Intron 3 Primers #95568、human STON2 intron 4 primers 和 SimpleChIP® Human α Satellite Repeat Primers #4486 进行实时 PCR 来对富集的 DNA 进行定量。将每份样品中免疫沉淀的 DNA 的量表现为相对于所输入染色质总量(等于 1)的信号。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 23 Expand Image
    Immunohistochemical analysis of paraffin-embedded human esophageal carcinoma using Phospho-AMPKα (Thr172) (40H9) Rabbit mAb performed on the Leica BOND RX.
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 24 Expand Image
    使用 SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005 对经维生素 D (10 nM) 处理 3 小时的 LS-180 细胞的交联染色质与 RXRα (D6H10) Rabbit mAb 或 Normal Rabbit IgG #2729 一起进行染色质免疫沉淀分析。使用 SimpleChIP® Human c-Fos Upstream Primers #25661、human UCA1 promoter primers 和 SimpleChIP® Human α Satellite Repeat Primers #4486 进行实时 PCR 来对富集的 DNA 进行定量。将每份样品中免疫沉淀的 DNA 的量表现为相对于所输入染色质总量(等于 1)的信号。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 25 Expand Image
    使用 SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003,对经 Forskolin #3828 (30μM, 1 小时)处理的 293 细胞中的交联染色质,在加入 CBP (D6C5) Rabbit mAb 或 Normal Rabbit IgG #2729 后,进行染色质免疫沉淀。使用人 ALS2 外显子 1 引物、SimpleChIP® Human NR4A3 Promoter Primers #4829 和 SimpleChIP® Human α Satellite Repeat Primers #4486,通过实时 PCR 对富集的 DNA 进行定量分析。将每份样品中免疫沉淀的 DNA 的量表现为相对于所输入染色质总量(等于 1)的信号。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 26 Expand Image
    使用 CBP (D6C5) Rabbit mAb(绿色)和 DyLight 554 Phalloidin #13054(红色)对 HeLa 细胞进行共聚焦免疫荧光分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 27 Expand Image
    使用 Phospho-AMPKα (Thr172) (40H9) 兔单克隆抗体对石蜡包埋的人结肠癌细胞进行免疫组织化学分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 28 Expand Image
    使用 Phospho-AMPKα (Thr172) (40H9) 兔单克隆抗体对石蜡包埋的人乳腺癌细胞进行免疫组织化学分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 29 Expand Image
    使用 Phospho-AMPKα (Thr172) (40H9) 兔单克隆抗体对石蜡包埋的人卵巢癌细胞进行免疫组织化学分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 30 Expand Image
    使用 Phospho-AMPKα (T172) (40H9) Rabbit mAb,对对照(左)或经苯乙双胍处理(右)的石蜡包埋的 NCI-H228 细胞沉淀物进行免疫组织化学分析。
    PPARγ Regulated Fatty Acid Metabolism Antibody Sampler Kit: Image 31 Expand Image
    使用 Rabbit (DA1E) mAb IgG XP® Isotype Control #3900(泳道 2)或 CBP (D6C5) Rabbit mAb(泳道 3)对 HeLa 细胞提取物的 CBP 进行免疫沉淀。泳道 1 是 10% 输入对照。使用 CBP (D6C5) Rabbit mAb 进行蛋白质印迹分析。