Revision 1

#42022Store at -20C

1 个试剂盒

(9 x 20 microliters)

Cell Signaling Technology

Orders: 877-616-CELL (2355) [email protected]

Support: 877-678-TECH (8324)

Web: [email protected] cellsignal.com

3 Trask LaneDanversMassachusetts01923USA
For Research Use Only. Not for Use in Diagnostic Procedures.
Product Includes Product # Quantity Mol. Wt Isotype/Source
Insulin Receptor β (4B8) Rabbit mAb 3025 20 µl 95 kDa Rabbit IgG
IGF-I Receptor β (D23H3) XP® Rabbit mAb 9750 20 µl 95 kDa Rabbit IgG
Phospho-IGF-I Receptor β (Tyr1131)/Insulin Receptor β (Tyr1146) Antibody 3021 20 µl 95 kDa Rabbit 
Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb 4060 20 µl 60 kDa Rabbit IgG
Phospho-Akt (Thr308) (D25E6) XP® Rabbit mAb 13038 20 µl 60 kDa Rabbit IgG
Phospho-GSK-3β (Ser9) (D85E12) XP® Rabbit mAb 5558 20 µl 46 kDa Rabbit IgG
Phospho-FoxO1 (Thr24)/FoxO3a (Thr32)/FoxO4 (Thr28) (4G6) Rabbit mAb 2599 20 µl 65, 78 to 82, 95 kDa Rabbit 
Phospho-mTOR (Ser2448) (D9C2) XP® Rabbit mAb 5536 20 µl 289 kDa Rabbit IgG
Phospho-Tuberin/TSC2 (Ser939) Antibody 3615 20 µl 200 kDa Rabbit 
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl Goat 

Please visit cellsignal.com for individual component applications, species cross-reactivity, dilutions, protocols, and additional product information.

Description

The Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit provides an economical means of detecting select components involved in the insulin and/or IGF-1 signaling pathways. The kit contains enough primary antibodies to perform at least two western blot experiments per antibody.

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Background

Insulin and IGF-1 act on two closely related tyrosine kinase receptors to initiate a cascade of signaling events. These signaling events activate a variety of biological molecules, including kinases and transcription factors, which regulate cell growth, survival and metabolism.

Type I insulin-like growth factor receptor (IGF-IR) is a transmembrane receptor tyrosine kinase that is widely expressed in many cell lines and cell types within fetal and postnatal tissues (1-3). Three tyrosine residues within the kinase domain (Tyr1131, Tyr1135, and Tyr1136) are the earliest major autophosphorylation sites (4). Phosphorylation of these three tyrosine residues is necessary for kinase activation (5,6). Insulin receptors (IRs) share significant structural and functional similarity with IGF-I receptors, including the presence of an equivalent tyrosine cluster (Tyr1146/1150/1151) within the kinase domain activation loop. Tyrosine autophosphorylation of IRs is one of the earliest cellular responses to insulin stimulation (7). Autophosphorylation begins with phosphorylation at Tyr1146 and either Tyr1150 or Tyr1151, while full kinase activation requires triple tyrosine phosphorylation (8).

Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (9-11). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (10,11). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (12) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (13,14).

Tuberin is a product of the TSC2 tumor suppressor gene and an important regulator of cell proliferation and tumor development (15). Tuberin is phosphorylated on Ser939 and Thr1462 in response to PI3K activation and the human TSC complex is a direct biochemical target of the PI3K/Akt pathway (16). This result complements Drosophila genetics studies suggesting the possible involvement of the tuberin-hamartin complex in the PI3K/Akt mediated insulin pathway (17-19).

The mammalian target of rapamycin (mTOR, FRAP, RAFT) is a Ser/Thr protein kinase (20-22) that functions as an ATP and amino acid sensor to balance nutrient availability and cell growth (23,24). When sufficient nutrients are available, mTOR responds to a phosphatidic acid-mediated signal to transmit a positive signal to p70 S6 kinase and participate in the inactivation of the eIF4E inhibitor, 4E-BP1 (25). These events result in the translation of specific mRNA subpopulations. mTOR is phosphorylated at Ser2448 via the PI3 kinase/Akt signaling pathway and autophosphorylated at Ser2481 (26,27).

The Forkhead family of transcription factors is involved in tumorigenesis of rhabdomyosarcoma and acute leukemias (28-30). Within the family, three members (FoxO1, FoxO4, and FoxO3a) have sequence similarity to the nematode orthologue DAF-16, which mediates signaling via a pathway involving IGFR1, PI3K, and Akt (31-33). Active forkhead members act as tumor suppressors by promoting cell cycle arrest and apoptosis. Increased proliferation results when forkhead transcription factors are inactivated through phosphorylation by Akt at Thr24, Ser256, and Ser319, which results in nuclear export and inhibition of transcription factor activity (34).

Glycogen synthase kinase-3 (GSK-3) was initially identified as an enzyme that regulates glycogen synthesis in response to insulin (35). GSK-3 is a critical downstream element of the PI3K/Akt cell survival pathway whose activity can be inhibited by Akt-mediated phosphorylation at Ser21 of GSK-3α and Ser9 of GSK-3β (36,37).

  1. Adams, T.E. et al. (2000) Cell Mol Life Sci 57, 1050-93.
  2. Baserga, R. (2000) Oncogene 19, 5574-81.
  3. Scheidegger, K.J. et al. (2000) J Biol Chem 275, 38921-8.
  4. Hernández-Sánchez, C. et al. (1995) J Biol Chem 270, 29176-81.
  5. Lopaczynski, W. et al. (2000) Biochem Biophys Res Commun 279, 955-60.
  6. Baserga, R. (1999) Exp Cell Res 253, 1-6.
  7. White, M.F. et al. (1985) J Biol Chem 260, 9470-8.
  8. White, M.F. et al. (1988) J Biol Chem 263, 2969-80.
  9. Franke, T.F. et al. (1997) Cell 88, 435-7.
  10. Burgering, B.M. and Coffer, P.J. (1995) Nature 376, 599-602.
  11. Franke, T.F. et al. (1995) Cell 81, 727-36.
  12. Alessi, D.R. et al. (1996) EMBO J 15, 6541-51.
  13. Sarbassov, D.D. et al. (2005) Science 307, 1098-101.
  14. Jacinto, E. et al. (2006) Cell 127, 125-37.
  15. Soucek, T. et al. (1998) Proc Natl Acad Sci U S A 95, 15653-8.
  16. Manning, B.D. et al. (2002) Mol Cell 10, 151-62.
  17. Gao, X. and Pan, D. (2001) Genes Dev 15, 1383-92.
  18. Potter, C.J. et al. (2001) Cell 105, 357-68.
  19. Tapon, N. et al. (2001) Cell 105, 345-55.
  20. Sabers, C.J. et al. (1995) J Biol Chem 270, 815-22.
  21. Brown, E.J. et al. (1994) Nature 369, 756-8.
  22. Sabatini, D.M. et al. (1994) Cell 78, 35-43.
  23. Gingras, A.C. et al. (2001) Genes Dev 15, 807-26.
  24. Dennis, P.B. et al. (2001) Science 294, 1102-5.
  25. Fang, Y. et al. (2001) Science 294, 1942-5.
  26. Navé, B.T. et al. (1999) Biochem J 344 Pt 2, 427-31.
  27. Peterson, R.T. et al. (2000) J Biol Chem 275, 7416-23.
  28. Anderson, M.J. et al. (1998) Genomics 47, 187-99.
  29. Galili, N. et al. (1993) Nat Genet 5, 230-5.
  30. Borkhardt, A. et al. (1997) Oncogene 14, 195-202.
  31. Nakae, J. et al. (1999) J Biol Chem 274, 15982-5.
  32. Rena, G. et al. (1999) J Biol Chem 274, 17179-83.
  33. Guo, S. et al. (1999) J Biol Chem 274, 17184-92.
  34. Arden, K.C. (2004) Mol Cell 14, 416-8.
  35. Welsh, G.I. et al. (1996) Trends Cell Biol 6, 274-9.
  36. Srivastava, A.K. and Pandey, S.K. (1998) Mol Cell Biochem 182, 135-41.
  37. Cross, D.A. et al. Nature 378, 785-9.

Background References

    Trademarks and Patents

    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    Alexa Fluor is a registered trademark of Life Technologies Corporation.
    All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information.

    限制使用

    除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。

    专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专

    Revision 1
    #42022

    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit

    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 1 Expand Image
    使用 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060 对经过 Calyculin A(100 uM,30 分钟)处理的 Jurkat 细胞的裂解物 (0.1 mg/mL) 进行 Simple Western™ 分析。虚拟泳道式图像(左图)显示一抗稀释比例为 1:10 和 1:50 时的单一靶标条带(如图所示)。对应的电泳图(右图)为一抗稀释比例在 1:10(蓝线)和 1:50(绿线)时沿毛细血管内分子量的化学发光结果。在还原条件下,使用 12-230 kDa 分离模块在 ProteinSimple(BioTechne 品牌)的 Jess™ Simple Western 仪器上进行该实验。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 2 Expand Image
    Simple WesternTM analysis of lysates (0.1 mg/mL) from MCF-7 cells treated with insulin (100nM, 10 minutes) using Phospho-mTOR (Ser2448) (D9C2) XP® Rabbit mAb #5536. 虚拟泳道式图像(左图)显示一抗稀释比例为 1:10 和 1:50 时的单一靶标条带(如图所示)。对应的电泳图(右图)为一抗稀释比例在 1:10(蓝线)和 1:50(绿线)时沿毛细血管内分子量的化学发光结果。This experiment was performed under reducing conditions on the JessTM Simple Western instrument from ProteinSimple, a BioTechne brand, using the 66-440 kDa separation module.
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 3 Expand Image
    使用 Phospho-Akt (Thr308) (D25E6) XP® Rabbit mAb(上图)或 Akt (pan) (C67E7) Rabbit mAb #4691(下图)对未经处理 (-) 或已经 Human Platelet-Derived Growth Factor AA (hPDGF-AA) #8913(100 ng/ml,5 分钟;+)处理的 NIH/3T3 细胞与未经处理的 (-) LNCaP 和 PC-3 细胞的提取物进行蛋白质印迹分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 4 Expand Image
    使用 Phospho-FoxO1 (Thr24)/(FoxO3a (Thr32)/FoxO4 (Thr28) (4G6) Rabbit mAb,对用 Calyculin A (#9902) 或 LY294002 (#9901) 处理的 Jurkat 细胞、NIH3T3 细胞和 COS-7 细胞提取物,进行蛋白质印迹分析,检测分别在 Thr24、Thr32 和 Thr28 位置磷酸化时的 FoxO1、FoxO3a 和 FoxO4(左图)。分别使用 FoxO1 (C29H4) Rabbit mAb (#2880)、FoxO3a (75D8) Rabbit mAb (#2497) 和 FoxO4 Antibody (#9472)(右图),检测总的 FoxO1、FoxO3a 和 FoxO4 水平。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 5 Expand Image
    使用 Phospho-IGF-I Receptor β (Tyr1131)/Insulin Receptor β (Tyr1146) Antibody (上图) 或对照 IR 抗体 (下图),对未经处理的或经胰岛素处理(100nM,指定时间) 的 3T3-L1 脂肪细胞提取物进行蛋白质印迹分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 6 Expand Image
    使用 Insulin Receptor β (4B8) Rabbit mAb,对不同细胞系提取物进行蛋白质印迹分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 7 Expand Image
    使用 Phospho-Tuberin/TSC2 (Ser939) Antibody(上图)、Phospho-Tuberin/TSC2 (Thr1462) Antibody #3611(中图)或 Tuberin/TSC2 Antibody #3612(下图)对未经处理的、已经 PDGF 处理、已经 PDGF 和 wortmannin 处理、已经 PDGF 和 rapamycin 处理的 NIH/3T3 细胞的提取物进行蛋白质印迹分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 8 Expand Image
    使用 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb(上)或 Akt (pan) (C67E7) Rabbit mAb #4691(下),对未经处理或经 LY294002/Wortmannin 处理的 PC-3 细胞、经血清饥饿或 PDGF 处理的 NIH/3T3 细胞提取物进行蛋白质印迹分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 9 Expand Image
    使用 Phospho-mTOR (Ser2448 位点) (D9C2) XP® Rabbit mAb(上)或 mTOR (7C10) Rabbit mAb #2983 对未经处理或经胰岛素单独处理(150 nM,5 分钟)或经胰岛素结合 λ 磷酸酶处理的血清饥饿 NIH/3T3 细胞提取物进行蛋白质印迹分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 10 Expand Image
    使用 Phospho-GSK-3β (Ser9) (D85E12) XP® Rabbit mAb(上)和 α/β-Tubulin Antibody #2148(下)对经 λ 磷酸酶或 PDGF 处理的 GSK-3α (-/-)(泳道 1,2)和 GSK-3β (-/-)(泳道 3,4)小鼠胚胎成纤维细胞 (MEF) 提取物进行蛋白质印迹法分析。(野生型 MEF、GSK-3α (-/-) 和 GSK-3β (-/-) 细胞由加拿大多伦多大学的 Jim Woodgett 博士友情提供)。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 11 Expand Image
    一抗与靶标蛋白结合之后,与偶联 HRP 的二抗形成复合体。添加 LumiGLO®,在酶催化分解期间发光。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 12 Expand Image
    使用 IGF-I Receptor β (D23H3) XP® Rabbit mAb(上)或 β-Actin Antibody #4967(下),对 293 细胞(IGF-I 受体 β+)和 SK-UT-1 细胞(IGF-I 受体 β-)的提取物进行蛋白质印迹分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 13 Expand Image
    使用 Rabbit (DA1E) mAb IgG XP® Isotype Control #3900(泳道 2)或 Phospho-Akt (Thr308) (D25E6) XP® Rabbit mAb (泳道 3)对 Jurkat 细胞提取物磷酸 Akt (Thr308) 进行免疫沉淀。泳道 1 是 10% 输入对照。使用 Phospho-Akt (Thr308) (D25E6) XP® Rabbit mAb 进行蛋白质印迹分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 14 Expand Image
    使用 Phospho-FoxO1 (Thr24)/(FoxO3a (Thr32)/FoxO4 (Thr28) (4G6) Rabbit mAb,对 Calyculin A (#9902) 或 LY294002 (#9901) 处理的 Jurkat 细胞提取物进行蛋白质印迹分析。该抗体的磷酸特异性的验证是通过蛋白转膜后不用 (-) 或使用 (-) 牛小肠 磷酸酶 (CIP) 处理膜实现的。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 15 Expand Image
    使用 Phospho-IGF-I Receptor β (Tyr1131)/Insulin Receptor β (Tyr1146) Antibody (上图) 或对照 IGF-I 受体抗体 (下图),对未经处理的或经 IGF-I 处理(100nM,2分钟) 的293细胞提取物进行蛋白质印迹分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 16 Expand Image
    使用 Insulin Receptor beta antibody (Lane 1) Lane 2 对经胰岛素处理过的 mIMCD-3 细胞提取物中的胰岛素受体 β 进行免疫沉淀法分析:无抗体对照。泳道 3:输入对照。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 17 Expand Image
    对经 Calyculin A #9902(100nM,30 分钟)处理的 Jurkat 提取物中的磷酸化 Akt (Ser473) 进行免疫沉淀分析。泳道 1 为 10% input,泳道 2 为 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb,泳道 为 Rabbit (DA1E) mAb IgG XP3® Isotype Control #3900。使用 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb 进行蛋白质印迹分析。Anti-rabbit IgG, HRP-linked Antibody #7074 用作二抗。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 18 Expand Image
    使用 Phospho-mTOR (Ser2448) (D9C2) XP® Rabbit mAb (绿色)对使用雷帕霉素处理(#9904,10 nM,2 小时,左图)、胰岛素处理(150 nM,6 分钟,中图)或胰岛素和 λ 磷酸酶处理(右图)的 HeLa 细胞进行共聚焦免疫荧光分析。用 DY-554 phalloidin 对肌动蛋白丝进行标记。蓝色伪彩 = DRAQ5® #4084(DNA 荧光染料)。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 19 Expand Image
    使用 Phospho-GSK-3β (Ser9) (D85E12) XP® Rabbit mAb(上)或 GSK-3β (27C10) Rabbit mAb #9315(下)对未处理的或经 LY294002/渥曼青霉素处理的 PC-3 细胞提取物进行蛋白质印迹法分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 20 Expand Image
    使用 IGF-I Receptor β (D23H3) XP® Rabbit mAb(绿色),对 MCF7 细胞(左)和 SK-UT-1 细胞(右)进行共聚焦免疫荧光分析。蓝色伪彩 = DRAQ5® #4084(DNA 荧光染料)。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 21 Expand Image
    使用 Phospho-Akt (Thr308) (D25E6) XP® Rabbit mAb (绿色)对经胰岛素(100 nM,15 分钟;左图)或 LY294002 #9901(50 μM,2 小时;右图)处理的 C2C12 细胞进行共聚焦免疫荧光分析。使用 DY-554 phalloidin(红色)标记肌动蛋白纤丝。蓝色伪彩 = DRAQ5® #4084(DNA 荧光染料)。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 22 Expand Image
    使用 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb 对石蜡包埋的人肺癌进行免疫组织化学分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 23 Expand Image
    使用 Phospho-GSK-3β (Ser9) (D85E12) XP® Rabbit mAb(绿色)对未处理(左)的、经 LY294002 和渥曼青霉素处理(分别为 #9901 和 #9951;中心)或经 λ 磷酸酶处理(右)的野生型小鼠胚胎成纤维细胞 (MEF)(顶排)、GSK-3β (-/-) MEF(中间排)或 PC-3 细胞(底排)进行共聚焦免疫荧光分析。使用 DY-554 phalloidin(红色)标记肌动蛋白纤丝。蓝色伪彩 = DRAQ5® #4084(DNA 荧光染料)。(MEF 野生型和 GSK-3β (-/-) 细胞由加拿大多伦多大学的 Jim Woodgett 博士友情提供)。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 24 Expand Image
    使用 IGF-I Receptor β (D23H3) XP® Rabbit mAb(实线)或浓度匹配的 Rabbit (DA1E) mAb IgG XP® Isotype Control #3900(虚线)对 SK-UT-1 细胞(蓝色,阴性)和 MCF7 细胞(绿色,阳性)进行流式细胞分析。Anti-rabbit IgG (H+L)、F(ab')2 Fragment (Alexa Fluor® 488 Conjugate) #4412 作为二抗。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 25 Expand Image
    使用浓度匹配的 Rabbit (DA1E) mAb IgG XP® Isotype Control #3900(虚线)作为对照组,使用 Phospho-Akt (Thr308) (D25E6) XP® Rabbit mAb(实线)对未经处理(绿色)或经 LY294002 #9901、Wortmannin #9951 和 U0126 #9903 处理(蓝色)的 Jurkat 细胞进行流式细胞分析。Anti-rabbit IgG (H+L)、F(ab')2 Fragment (Alexa Fluor® 488 Conjugate) #4412 作为二抗。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 26 Expand Image
    使用 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb 对石蜡包埋的人乳腺癌进行免疫组织化学分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 27 Expand Image
    使用 Phospho-GSK-3β (Ser9) (D85E12) XP® Rabbit mAb 对未处理的(蓝色)或经 PDGF 处理(绿色)的 NIH/3T3 细胞进行流式细胞术分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 28 Expand Image
    使用 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb 对石蜡包埋的 PTEN 杂合突变小鼠子宫内膜进行免疫组织化学分析。(组织切片由 Brigham and Women's Hospital, Harvard Medical School, Boston, MA 的 Sabina Signoretti 博士惠赠)
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 29 Expand Image
    使用 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb(左)或 PTEN (138G6) Rabbit mAb #9559(右),对石蜡包埋的 MDA-MB-468 异种移植物进行免疫组织化学分析。注意:PTEN 缺失型 MDA-MB-468 细胞存在 P-Akt 染色。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 30 Expand Image
    使用 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060,对经 SignalStain® Antibody Diluent #8112(左)和 TBST/5% Normal Goat Serum(右)对比处理的石蜡包埋人乳腺癌进行免疫组织化学分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 31 Expand Image
    使用 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb 对未经处理(左)或经 λ 磷酸酶处理(右)的石蜡包埋的 U-87MG 异种移植物进行免疫组织化学分析。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 32 Expand Image
    在 SignalSlide® Phospho-Akt (Ser473) IHC Controls #8101(未经处理(左图)或经过 LY294002 处理(右图)的石蜡包埋的 LNCaP 细胞)上使用 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb 进行免疫组织化学分析
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 33 Expand Image
    使用 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb(绿色),对经 LY294002 处理(左)或经胰岛素处理(右)的 C2C12 细胞进行共聚焦免疫荧光分析。肌动蛋白纤丝用 Alexa Fluor® 555 phalloidin #8953(红色)进行标记。蓝色伪彩 = DRAQ5®#4084(DNA 荧光染料)。
    Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit: Image 34 Expand Image
    使用 Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb(实线)或浓度匹配的 Rabbit (DA1E) mAb IgG XP® Isotype Control #3900(虚线)对未经处理(绿色)或已经过 LY294002 #9901、Wortmannin #9951 和 U0126 #9903(50 μM,1 μM 和 10 μM,2 小时;蓝色)处理的 Jurkat 细胞进行流式细胞分析。Anti-rabbit IgG (H+L), F(ab')2 Fragment (Alexa Fluor® 488 Conjugate) #4412 用作二抗。