Revision 1

#72624Store at -20C

1 个试剂盒

(6 x 20 microliters)

Cell Signaling Technology

Orders: 877-616-CELL (2355) [email protected]

Support: 877-678-TECH (8324)

Web: [email protected] cellsignal.com

3 Trask LaneDanversMassachusetts01923USA
For Research Use Only. Not for Use in Diagnostic Procedures.
Product Includes Product # Quantity Mol. Wt Isotype/Source
Enolase-1 Antibody 3810 20 µl 47 kDa Rabbit 
Enolase-2 (E2H9X) XP® Rabbit mAb 24330 20 µl 47 kDa Rabbit IgG
FBP1/FBPase 1 (D2T7F) Rabbit mAb 59172 20 µl 39 kDa Rabbit IgG
GPI (E2Q8J) XP® Rabbit mAb 94068 20 µl 60 kDa Rabbit IgG
PCK1 (D12F5) Rabbit mAb 12940 20 µl 63 kDa Rabbit IgG
PCK2 (D3E11) Rabbit mAb 8565 20 µl 71 kDa Rabbit IgG
PGAM1 (D3J9T) Rabbit mAb 12098 20 µl 28 kDa Rabbit IgG
PGK1 Antibody 68540 20 µl 43 kDa Rabbit 
Pyruvate Carboxylase Antibody 66470 20 µl 130 kDa Rabbit 
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl Goat 

Please visit cellsignal.com for individual component applications, species cross-reactivity, dilutions, protocols, and additional product information.

Description

The Gluconeogenesis Antibody Sampler Kit provides an economical means of detecting select components involved in the gluconeogenesis metabolism pathway. The kit includes enough antibodies to perform two western blot experiments with each primary antibody.

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibodies.

Background

Enolase is an important glycolytic enzyme involved in the interconversion of 2-phosphoglycerate to phosphoenolpyruvate. Mammalian enolase exists as three subunits: enolase-1 (α-enolase), enolase-2 (γ-enolase), and enolase-3 (β-enolase). Expression of the enolase isoforms differs in a tissue specific manner (1). Enolase-1 plays a key role in anaerobic metabolism under hypoxic conditions and may act as a cell surface plasminogen receptor during tissue invasion (2,3). Abnormal expression of enolase-1 is associated with tumor progression in some cases of breast and lung cancer (4-7). Alternatively, an enolase-1 splice variant (MBP-1) binds the c-myc promoter p2 and may function as a tumor suppressor. For this reason, enolase-1 is considered as a potential therapeutic target in the treatment of some forms of cancer (8). Research studies have shown elevated levels of neuron-specific enolase-2 in neuroblastoma (1) and small-cell lung cancer (9,10). Fructose-1,6-bisphosphatase 1 (FBP1 or FBPase 1), a rate-limiting enzyme in gluconeogenesis, catalyzes the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate (11). Inhibition of FBP1 expression in basal-like breast cancer (BLBC) cells leads to metabolic reprogramming, including enhanced glycolysis, which leads to increased glucose uptake, biosynthesis of macromolecules, and activation of PKM2 (11). This metabolic reprogramming endows tumor cells with cancer stem cell (CSC)-like properties, thereby increasing their tumorigenicity (11). Depletion of FBP1 was also reported in more than 600 clear cell renal cell carcinoma (ccRCC) tumors, suggesting that FBP1 may inhibit ccRCC tumor progression (12). Glucose-6-phosphate isomerase (GPI) is a multi-functional protein belonging to the glucose phosphate isomerase family (13,14). As an intracellular metabolic enzyme, GPI plays a pivotal role in glycolysis and gluconeogenesis by catalyzing the interconversion of D-glucose-6-phosphate and D-fructose-6-phosphate (15). GPI is also secreted, where it functions as a cytokine (referred to as Autocrine Motility Factor, AMF), acting via the E3-ubiquitin-protein ligase AMFR/gp78 (16). In normal tissues, GPI/AMF has been shown to promote both immune cell maturation and neuronal cell survival (17,18). It is also secreted in abundance by some tumor cells (19), where it has been shown to promote tumor cell migration and metastasis (20,21). Phosphoenolpyruvate carboxykinase 1 (PCK1, PEPCK1, or PEPCK-C) is a cytosolic enzyme responsible for the conversion of oxaloacetate to phosphoenolpyruvate (22). PCK1 and PCK2 are involved in controlling the rate-limiting step of gluconeogenesis in the liver, which generates glucose from non-carbohydrate substrates, such as lactate and glycerol (23, 24). PCK2 (PEPCK2 or PEPCK-M) encodes an isoform of phosphoenolpyruvate carboxykinase (PEPCK) that is found in the mitochondria of renal and hepatic tissues (22). Phosphoglycerate mutase (PGAM1) catalyzes the conversion of 3-phosphoglycerate to 2-phosphoglycerate during glycolysis (25-29). Research studies have shown increased PGAM1 expression in cancer (25-28) and mental disease (29). PGK1 (phosphoglycerate kinase) is an essential enzyme in the glycolysis pathway (30). It catalyzes the reversible phospho-transfer reaction from 1,3-diphosphoglycerate to ADP to form ATP and 3-phosphoglycerate. The expression of PGK1 is upregulated in many cancer types and plays an important role in cancer cell proliferation and metastasis (31-34). Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate to oxaloacetate to replenish TCA cycle intermediates. It is also critical in regulating gluconeogenesis in the liver (35).

  1. Pancholi, V. (2001) Cell Mol Life Sci 58, 902-20.
  2. Redlitz, A. et al. (1995) Eur J Biochem 227, 407-15.
  3. Jiang, B.H. et al. (1997) Cancer Res 57, 5328-35.
  4. Peebles, K.A. et al. (2003) Carcinogenesis 24, 651-7.
  5. Zhang, L. et al. (2000) J Surg Res 93, 108-19.
  6. Wu, W. et al. (2002) Clin Exp Metastasis 19, 319-26.
  7. Hennipman, A. et al. (1988) Tumour Biol 9, 241-8.
  8. Feo, S. et al. (2000) FEBS Lett 473, 47-52.
  9. Stern, P. et al. (2007) Tumour Biol 28, 84-92.
  10. O'Shea, P. et al. (1995) Ir J Med Sci 164, 31-6.
  11. Dong, C. et al. (2013) Cancer Cell 23, 316-31.
  12. Li, B. et al. (2014) Nature 513, 251-5.
  13. Haga, A. et al. (2000) Biochim Biophys Acta 1480, 235-44.
  14. Jeffery, C.J. et al. (2000) Biochemistry 39, 955-64.
  15. Kim, J.W. and Dang, C.V. (2005) Trends Biochem Sci 30, 142-50.
  16. Fairbank, M. et al. (2009) Mol Biosyst 5, 793-801.
  17. Gurney, M.E. et al. (1986) Science 234, 574-81.
  18. Gurney, M.E. et al. (1986) Science 234, 566-74.
  19. Lucarelli, G. et al. (2015) Medicine (Baltimore) 94, e2117.
  20. Liotta, L.A. et al. (1986) Proc Natl Acad Sci U S A 83, 3302-6.
  21. Funasaka, T. and Raz, A. (2007) Cancer Metastasis Rev 26, 725-35.
  22. Caton, P.W. et al. (2009) Life Sci 84, 738-44.
  23. Yoon, J.C. et al. (2001) Nature 413, 131-8.
  24. Fischer, S. et al. (2010) Biol Reprod 83, 859-65.
  25. Vander Heiden, M.G. et al. (2010) Science 329, 1492-9.
  26. Jacobowitz, D.M. et al. (2008) Microvasc Res 76, 89-93.
  27. Ren, F. et al. (2010) Mol Cancer 9, 81.
  28. Evans, M.J. et al. (2005) Nat Biotechnol 23, 1303-7.
  29. Martins-de-Souza, D. et al. (2009) BMC Psychiatry 9, 17.
  30. Beutler, E. (2007) Br J Haematol 136, 3-11.
  31. Wilson, R.B. et al. (2019) Pleura Peritoneum 4, 20190003.
  32. Yu, T. et al. (2017) Cancer Res 77, 5782-5794.
  33. Hu, H. et al. (2017) Hepatology 65, 515-528.
  34. Cao, H. et al. (2017) Cancer Chemother Pharmacol 79, 985-994.
  35. Cappel, D.A. et al. (2019) Cell Metab 29, 1291-1305.e8.

Background References

    Trademarks and Patents

    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information.

    限制使用

    除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。

    专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专

    Revision 1
    #72624

    Gluconeogenesis Antibody Sampler Kit

    Gluconeogenesis Antibody Sampler Kit: Image 1 Expand Image
    使用 GPI (E2Q8J) XP® Rabbit mAb 对石蜡包埋的人尿路上皮癌进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 2 Expand Image
    使用 GPI (E2Q8J) XP® Rabbit mAb 对石蜡包埋的正常人结肠进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 3 Expand Image
    使用 GPI (E2Q8J) XP® Rabbit mAb 对石蜡包埋的人结肠腺癌进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 4 Expand Image
    使用 GPI (E2Q8J) XP® Rabbit mAb 对石蜡包埋的人结肠腺癌进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 5 Expand Image
    使用 GPI (E2Q8J) XP® Rabbit mAb 对石蜡包埋的正常人食道进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 6 Expand Image
    使用 GPI (E2Q8J) XP® Rabbit mAb 对石蜡包埋的人非霍奇金氏淋巴瘤进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 7 Expand Image
    使用 GPI (E2Q8J) XP® Rabbit mAb 对石蜡包埋的人前列腺癌进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 8 Expand Image
    使用 GPI (E2Q8J) XP® Rabbit mAb 对石蜡包埋的正常人唾液腺进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 9 Expand Image
    使用 GPI (E2Q8J) XP® Rabbit mAb Rabbit mAb(上图)、Myc-Tag (71D10) Rabbit mAb #2278(中图)和 GAPDH (D16H11) XP® Rabbit mAb #5174(下图)对转染空载(泳道 1)或瞬时转染带血浆编码的 Myc/DDK 标记的 GPI 蛋白(泳道 2)的 293T 细胞提取物进行蛋白质印迹分析。
    Gluconeogenesis Antibody Sampler Kit: Image 10 Expand Image
    使用 GPI (E2Q8J) XP® Rabbit mAb(上图)和 GAPDH (D16H11) XP® Rabbit mAb #5174(下图)对不同细胞系的提取物进行蛋白质印迹分析。GPI 在细胞系中的表达水平与基于公开可用生物信息学数据库的预期一致,证实了抗体对 GPI 的特异性。
    Gluconeogenesis Antibody Sampler Kit: Image 11 Expand Image
    使用 GPI (E2Q8J) XP® Rabbit mAb 对石蜡包埋的 TF-1 细胞沉淀物(左图,阳性)或 HuH-6 细胞沉淀物(右图,阴性)进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 12 Expand Image
    以浓度匹配的 Rabbit (DA1E) mAb IgG XP® Isotype Control #3900(右图)作为对照,使用 GPI (E2Q8J) XP® Rabbit mAb(左图)对石蜡包埋的正常人睾丸进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 13 Expand Image
    使用 PGAM1 (D3J9T) Rabbit mAb,对不同细胞系的提取物进行蛋白质印迹分析。
    Gluconeogenesis Antibody Sampler Kit: Image 14 Expand Image
    使用 PCK1 (D12F5) Rabbit mAb 对不同细胞系的提取物进行蛋白质印迹分析。
    Gluconeogenesis Antibody Sampler Kit: Image 15 Expand Image
    使用 Enolase-2 (E2H9X) XP® Rabbit mAb(上图)和 β-Actin (D6A8) Rabbit mAb #8457(下图)对小鼠脑、大鼠脑、人脑和小鼠肝细胞的提取物进行蛋白印迹分析。
    Gluconeogenesis Antibody Sampler Kit: Image 16 Expand Image
    使用 Enolase-1 Antibody #3810(上图)或 β-Actin (D6A8) Rabbit mAb #8457(下图)对未处理的 (-) 或 Enolase-1 敲除型 (+) SH-SY5Y 细胞提取物进行蛋白质印迹分析。
    Gluconeogenesis Antibody Sampler Kit: Image 17 Expand Image
    使用 FBP1/FBPase 1 (D2T7F) Rabbit mAb 对 MCF7 细胞和不同组织的提取物进行蛋白质印迹分析。
    Gluconeogenesis Antibody Sampler Kit: Image 18 Expand Image
    使用 Pyruvate Carboxylase Antibody 对不同细胞类型的提取物进行蛋白质印迹分析。
    Gluconeogenesis Antibody Sampler Kit: Image 19 Expand Image
    使用 PGK1 Antibody(上图)和 β-Actin (D6A8) Rabbit mAb #8457(下图)对不同细胞系的提取物进行蛋白印迹分析。
    Gluconeogenesis Antibody Sampler Kit: Image 20 Expand Image
    一抗与靶标蛋白结合之后,与偶联 HRP 的二抗形成复合体。添加 LumiGLO®,在酶催化分解期间发光。
    Gluconeogenesis Antibody Sampler Kit: Image 21 Expand Image
    使用 PCK2 (D3E11) Rabbit mAb 对不同细胞系的提取物进行蛋白质印迹分析。
    Gluconeogenesis Antibody Sampler Kit: Image 22 Expand Image
    使用 PCK1 (D12F5) Rabbit mAb(上图)、DYKDDDDK Tag (9A3) Mouse mAb #8146(中间)或 β-Actin (D6A8) Rabbit mAb #8457(下图)对转染空载 (-) 或转染带有 Myc/DDK 标签的人全长 PCK1 (hPCK1-Myc/DDK; +) 的表达载体的 293 细胞的提取物进行蛋白质印迹分析。
    Gluconeogenesis Antibody Sampler Kit: Image 23 Expand Image
    以浓度匹配的 Rabbit (DA1E) mAb IgG XP® Isotype Control #3900(右图)作为对照,使用 Enolase-2 (E2H9X) XP® Rabbit mAb(左图)对石蜡包埋的人膀胱腺癌细胞进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 24 Expand Image
    使用 Enolase-1 Antibody 对不同细胞类型的提取物进行蛋白质印迹分析。
    Gluconeogenesis Antibody Sampler Kit: Image 25 Expand Image
    使用 PCK2 (D3E11) Rabbit mAb (绿色)对显示与用 MitoTracker® Red CMXRos(红色)标记的线粒体共定位的 HeLa 细胞进行共聚焦免疫荧光分析。蓝色伪彩 = DRAQ5® #4084(DNA 荧光染料)。
    Gluconeogenesis Antibody Sampler Kit: Image 26 Expand Image
    使用 Enolase-2 (E2H9X) XP® Rabbit mAb 对石蜡包埋的人乳腺导管癌细胞进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 27 Expand Image
    使用 Enolase-2 (E2H9X) XP® Rabbit mAb 对石蜡包埋的人结肠腺癌细胞进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 28 Expand Image
    使用 Enolase-2 (E2H9X) XP® Rabbit mAb 对石蜡包埋的人咽喉粘液表皮样癌细胞进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 29 Expand Image
    使用 Enolase-2 (E2H9X) XP® Rabbit mAb 对石蜡包埋的小鼠脑细胞进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 30 Expand Image
    使用 Enolase-2 (E2H9X) XP® Rabbit mAb 对石蜡包埋的小鼠胰腺细胞进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 31 Expand Image
    使用 Enolase-2 (E2H9X) XP® Rabbit mAb 对石蜡包埋的 TT 细胞沉淀物(左图,阳性)或 Huh7 细胞沉淀物(右图,阴性)进行免疫组织化学分析。
    Gluconeogenesis Antibody Sampler Kit: Image 32 Expand Image
    使用 Enolase-2 (E2H9X) XP® Rabbit mAb 对石蜡包埋的人前列腺癌细胞进行免疫组织化学分析。