Revision 1

#89947Store at -20C

1 个试剂盒

(7 x 20 microliters)

Cell Signaling Technology

Orders: 877-616-CELL (2355) [email protected]

Support: 877-678-TECH (8324)

Web: [email protected] cellsignal.com

3 Trask LaneDanversMassachusetts01923USA
For Research Use Only. Not for Use in Diagnostic Procedures.
Product Includes Product # Quantity Mol. Wt Isotype/Source
BiP (C50B12) Rabbit mAb 3177 20 µl 78 kDa Rabbit IgG
eIF2α (D7D3) XP® Rabbit mAb 5324 20 µl 38 kDa Rabbit IgG
Phospho-eIF2α (Ser51) (D9G8) XP® Rabbit mAb 3398 20 µl 38 kDa Rabbit IgG
Atg12 (D88H11) Rabbit mAb 4180 20 µl 16, 55 kDa Rabbit IgG
Beclin-1 (D40C5) Rabbit mAb 3495 20 µl 60 kDa Rabbit IgG
JNK1 (2C6) Mouse mAb 3708 20 µl 46, 54 kDa Mouse IgG1
Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb 4668 20 µl 46, 54 kDa Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl Goat 
Anti-mouse IgG, HRP-linked Antibody 7076 100 µl Horse 

Please visit cellsignal.com for individual component applications, species cross-reactivity, dilutions, protocols, and additional product information.

Description

The ER Stress-induced Antibody Sampler Kit contains reagents to investigate ER stress-induced signaling within the cell. The kit contains enough primary antibodies to perform four western blot experiments per primary antibody.

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibodies.

Background

The endoplasmic reticulum (ER) is an organelle with essential biosynthetic and signaling functions in eukaryotic cells (1). Post synthesis of secretory and transmembrane proteins on polysomes, proteins are translocated into the ER where they are often modified by disulfide bond formation, amino-linked glycosylation, and folding. Different physiological and pathological conditions can disturb proper protein folding in the ER causing ER stress (1). ER stress activates an intracellular signaling transduction pathway called unfolded protein response (UPR) and autophagy to avoid cell death (2). The main role of UPR is to improve the protein load on the ER by shutting down protein translation and gene transcription to enhance ER's folding capacity (2). On the other hand, autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmc contents (3,4). One of the chaperones aiding in proper protein folding is Binding immunoglobulin Protein (BiP) (5,6). BiP works by binding to misfolded proteins to prevent them from forming aggregates and assists in proper refolding (7). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related (Atg) genes. Formation of the autophagosome involves a ubiquitin-like conjugation system in which Atg12 is covalently bound to Atg5 and targeted to autophagosome vesicles (8-10). One of the proteins critical to autophagy process is Beclin-1, the mammalian orthologue of the yeast autophagy protein Apg6/Vps30 (11). Beclin-1 can complement defects in yeast autophagy caused by loss of Apg6 and can also stimulate autophagy when overexpressed in mammalian cells (12). Mammalian Beclin-1 was originally isolated in a yeast two-hybrid screen for Bcl-2 interacting proteins and has been shown to interact with Bcl-2 and Bcl-xL, but not with Bax or Bak (13). Phosphorylation of the eukaryotic initiation factor 2 (eIF2) α subunit is a well-documented mechanism to downregulate protein synthesis under a variety of stress conditions. eIF2 binds GTP and Met-tRNAi and transfers Met-tRNA to the 40S subunit to form the 43S preinitiation complex (14,15). Kinases that are activated by viral infection (PKR) can phosphorylate the α subunit of eIF2 (16,17). Induction of PKR by IFN-γ and TNF-α induces potent phosphorylation of eIF2α at Ser51 (18,19). There are three SAPK/JNK genes each of which undergoes alternative splicing, resulting in numerous isoforms (20). The IRE1, a transmembrane serine/threonine kinase (21,22), through its kinase activity activates SAPK/JNK in the early stage of ER stress in order to induce autophagosome formation (23).

  1. Verfaillie, T. et al. (2010) Int J Cell Biol 2010, 930509.
  2. Ogata, M. et al. (2006) Mol Cell Biol 26, 9220-31.
  3. Reggiori, F. and Klionsky, D.J. (2002) Eukaryot Cell 1, 11-21.
  4. Codogno, P. and Meijer, A.J. (2005) Cell Death Differ 12 Suppl 2, 1509-18.
  5. Wabl, M. and Steinberg, C. (1982) Proc Natl Acad Sci U S A 79, 6976-8.
  6. Haas, I.G. and Wabl, M. (2002) Nature 306, 387-9.
  7. Kohno, K. et al. (1993) Mol Cell Biol 13, 877-90.
  8. Mizushima, N. et al. (1998) J Biol Chem 273, 33889-92.
  9. Mizushima, N. et al. (1998) Nature 395, 395-8.
  10. Suzuki, K. et al. (2001) EMBO J 20, 5971-81.
  11. Kametaka, S. et al. (1998) J Biol Chem 273, 22284-91.
  12. Liang, X.H. et al. (1999) Nature 402, 672-6.
  13. Liang, X.H. et al. (1998) J Virol 72, 8586-96.
  14. Kimball, S.R. (1999) Int J Biochem Cell Biol 31, 25-9.
  15. de Haro, C. et al. (1996) FASEB J 10, 1378-87.
  16. Kaufman, R.J. (1999) Genes Dev 13, 1211-33.
  17. Sheikh, M.S. and Fornace, A.J. (1999) Oncogene 18, 6121-8.
  18. Cheshire, J.L. et al. (1999) J Biol Chem 274, 4801-6.
  19. Zamanian-Daryoush, M. et al. (2000) Mol Cell Biol 20, 1278-90.
  20. Kyriakis, J.M. and Avruch, J. (2001) Physiol Rev 81, 807-69.
  21. Nikawa, J. and Yamashita, S. (1992) Mol Microbiol 6, 1441-6.
  22. Cox, J.S. et al. (1993) Cell 73, 1197-206.
  23. Urano, F. et al. (2000) Science 287, 664-6.

Background References

    Trademarks and Patents

    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.
    All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information.

    限制使用

    除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。

    专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专

    Revision 1
    #89947

    ER Stress-induced Autophagy Antibody Sampler Kit

    ER Stress-induced Autophagy Antibody Sampler Kit: Image 1 Expand Image
    使用 Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb #4668 对经过紫外线(50 mJ,恢复 30 分钟)处理的 HEK293 细胞的裂解物 (1.0 mg/mL) 进行 Simple Western™ 分析。虚拟泳道视图(左图)显示一抗稀释比例为 1:10 和 1:50 时的两个靶标条带(如图所示)。对应的电泳图(右图)为一抗稀释比例在 1:10(蓝线)和 1:50(绿线)时沿毛细血管内分子量的化学发光结果。在还原条件下,使用 12-230 kDa 分离模块在 ProteinSimple(BioTechne 品牌)的 Jess™ Simple Western 仪器上进行该实验。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 2 Expand Image
    使用 eIF2α (D7D3) XP® Rabbit mAb #5324 对 MCF-7 细胞的裂解物 (0.1 mg/mL) 进行 Simple Western™ 分析。虚拟泳道式图像(左图)显示一抗稀释比例为 1:50 和 1:250 时的单一靶标条带(如图所示)。对应的电泳图(右图)为一抗稀释比例在 1:50(蓝线)和 1:250(绿线)时沿毛细血管内分子量的化学发光结果。在还原条件下,使用 12-230 kDa 分离模块在 ProteinSimple(BioTechne 品牌)的 Jess™ Simple Western 仪器上进行该实验。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 3 Expand Image
    使用 BiP (C50B12) Rabbit mAb 对不同细胞系的提取物进行蛋白质印迹分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 4 Expand Image
    使用 Phospho-eIF2α (Ser51) (D9G8) XP® Rabbit mAb (上)或 eIF2α Antibody #9722(下)对未经处理的或经 Thapsigargin 处理的 C2C12 细胞提取物进行蛋白质印迹分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 5 Expand Image
    使用 Beclin-1 (D40C5) Rabbit mAb 对不同细胞系提取物进行蛋白质印迹分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 6 Expand Image
    使用 JNK1 (2C6) Mouse mAb 对未经转染(泳道 1)、空载转染(泳道2)或经 SignalSilence® SAPK/JNK siRNA I #6232(泳道 3)或 SignalSilence® SAPK/JNK siRNA II #6233(泳道 4)转染 72 小时的 Hela 细胞提取物进行蛋白质印迹分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 7 Expand Image
    使用 Atg12 (D88H11) Rabbit mAb 对不同细胞系提取物进行蛋白质印迹分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 8 Expand Image
    使用 Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb 对未经处理的或经紫外线处理的 293 细胞、未经处理或经紫外线处理的 NIH/3T3 细胞、或未经处理或经 anisomycin 处理的 C6 细胞提取物进行蛋白质印迹分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 9 Expand Image
    使用 eIF2α (D7D3) XP® Rabbit mAb 对不同细胞系提取物进行蛋白质印迹分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 10 Expand Image
    一抗与靶标蛋白结合之后,与偶联 HRP 的二抗形成复合体。添加 LumiGLO®,在酶催化分解期间发光。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 11 Expand Image
    一抗与靶标蛋白结合之后,与偶联 HRP 的二抗形成复合体。添加 LumiGLO*,它可在酶催化的分解期间发光。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 12 Expand Image
    使用 BiP (C50B12) Rabbit mAb 对石蜡包埋的人恶性胶质瘤进行免疫组织化学分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 13 Expand Image
    使用 Phopsho-eIF2α (Ser51) (D9G8) XP® Rabbit mAb 对未经处理的(左)或经 λ 磷酸酶处理(右)的石蜡包埋人结肠癌组织进行免疫组织化学分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 14 Expand Image
    使用 Beclin-1 (D40C5) XP® Rabbit mAb #3495(上)或 α-Tubulin (11H10) Rabbit mAb #2125(下)对经 100 nM SignalSilence® Control siRNA (Unconjugated) #6568 (-)、SignalSilence® Beclin-1 siRNA I #6222 (+) 或 SignalSilence® Beclin-1 siRNA II (+) 转染的 Hela 细胞提取物进行蛋白质印迹分析。Beclin-1 (D40C5) XP® Rabbit mAb 可确认 Beclin-1 的表达沉默,而 α-Tubulin (11H10) Rabbit mAb 则用作观察上样量和 Beclin-1 siRNA 的特异性。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 15 Expand Image
    使用 JNK1 (2C6) Mouse mAb 对未经处理的或经紫外线处理(40 J/m2,30 min 恢复)的指定细胞系提取物进行蛋白质印迹分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 16 Expand Image
    在对照肽(左)或 Phospho-SAPK/JNK (Thr183/Tyr185) Blocking Peptide #1215(右)存在的情况下,使用 Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb 对石蜡包埋的人肺癌组织进行免疫组织化学分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 17 Expand Image
    对 Hela 细胞裂解物进行免疫沉淀/蛋白质印迹分析。泳道 1 包含裂解物 input (10%),泳道 2 使用非特异性兔 IgG 进行免疫沉淀分析,泳道 3 使用 eIF2α (D7D3) XP® Rabbit mAb #5324 进行免疫沉淀分析。使用 eIF2α (L57A5) Mouse mAb #2103 进行蛋白质印迹分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 18 Expand Image
    使用 BiP (C50B12) Rabbit mAb 对石蜡包埋的人结肠癌进行免疫组织化学分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 19 Expand Image
    使用 Phospho-eIF2α (Ser51) (D9G8) XP® Rabbit mAb 对石蜡包埋的人肺癌组织进行免疫组织化学分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 20 Expand Image
    使用 Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb 对未经处理的(左)或经紫外线处理(右)的石蜡包埋 293T 细胞进行免疫组织化学分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 21 Expand Image
    使用 eIF2α (D7D3) XP® Rabbit mAb 对石蜡包埋的人肺癌组织进行免疫组织化学分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 22 Expand Image
    使用 BiP (C50B12) Rabbit mAb 对石蜡包埋的人肝癌进行免疫组织化学分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 23 Expand Image
    使用 Phospho-eIF2α (Ser51) (D9G8) XP® Rabbit mAb 对石蜡包埋的人淋巴瘤组织进行免疫组织化学分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 24 Expand Image
    使用 eIF2α (D7D3) XP® Rabbit mAb 对石蜡包埋的小鼠结肠进行免疫组织化学分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 25 Expand Image
    在对照物肽(左)或 BiP Blocking Peptide #1084(右)存在的情况下,使用 BiP (C50B12) Rabbit mAb 对石蜡包埋的人乳腺癌进行免疫组织化学分析。
    ER Stress-induced Autophagy Antibody Sampler Kit: Image 26 Expand Image
    使用与浓度匹配的 Rabbit (DA1E) mAb IgG XP® Isotype Control #3900(红色)作为 BiP (C50B12) Rabbit mAb(蓝色)的对照,对 A204 细胞进行流式细胞术分析。Anti-rabbit IgG (H+L)、F(ab')2 Fragment (Alexa Fluor® 488 Conjugate) #4412 作为二抗。