Revision 1

#8575Store at -20C

1 个试剂盒

(6 x 20 microliters)

Cell Signaling Technology

Orders: 877-616-CELL (2355) [email protected]

Support: 877-678-TECH (8324)

Web: [email protected] cellsignal.com

3 Trask LaneDanversMassachusetts01923USA
For Research Use Only. Not for Use in Diagnostic Procedures.
Product Includes Product # Quantity Mol. Wt Isotype/Source
ATP2A2/SERCA2 (D51B11) Rabbit mAb 9580 20 µl 114, 140 kDa Rabbit IgG
Phospho-Phospholamban (Ser16/Thr17) Antibody 8496 20 µl 6 (monomer); 12, 24 (oligomers) kDa Rabbit 
Phospholamban (D9W8M) Rabbit mAb 14562 20 µl 12, 24 kDa Rabbit IgG
Phospho-PKA C (Thr197) (D45D3) Rabbit mAb 5661 20 µl 42 kDa Rabbit IgG
PKA C-α (D38C6) Rabbit mAb 5842 20 µl 42 kDa Rabbit IgG
ATP2A1/SERCA1 (D54G12) Rabbit mAb 12293 20 µl 100 kDa Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl Goat 

Please visit cellsignal.com for individual component applications, species cross-reactivity, dilutions, protocols, and additional product information.

Description

The Calcium Ion Regulation Antibody Sampler Kit provides an economical way to investigate the regulation of calcium ions within the cell. The kit contains enough primary and secondary antibodies to perform two western blot experiments per primary antibody.

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Background

Sarcoplasmic and endoplasmic reticulum Ca2+ ATPases (SERCA) are members of a highly conserved family of Ca2+ pumps (1). ATP2A1 (SERCA1) is a fast-twitch, skeletal muscle sarcoplasmic reticulum (SR) Ca2+ ATPase (2). Multiple ATP2A2 (SERCA2) isoforms have been isolated, with ATP2A2a (SERCA2a) found predominantly in the SR of muscle cells and ATP2A2b (SERCA2b) more ubiquitously expressed in the ER of most cell types (3). Post-translational modification of ATP2A2, including phosphorylation and tyrosine nitration, modify Ca2+ -ATPase activity and calcium transport (4,5).

Phospholamban (PLN) was identified as a major phosphoprotein component of the SR (6). Despite very high expression in cardiac tissue, phospholamban is also expressed in skeletal and smooth muscle (7). Localization of PLN is limited to the SR, where it serves as a regulator of the sarco-endoplasmic reticulum calcium ATPase, SERCA (8). PLN binds directly to SERCA and effectively lowers its affinity for calcium, thus reducing calcium transport into the SR. Phosphorylation of PLN at Ser16 by PKA or myotonic dystrophy protein kinase and/or phosphorylation at Thr17 by Ca2+/calmodulin-dependent protein kinase results in release of PLN from SERCA, relief of this inhibition, and increased calcium uptake by SR (reviewed in 9,10). It has long been held that phosphorylation at Ser16 and Thr17 occurs sequentially, but increasing evidence suggests that phosphorylation, especially at Thr17, may be differentially regulated (reviewed in 11,12).

The second messenger cyclic AMP (cAMP) activates cAMP-dependent protein kinase (PKA or cAPK) in mammalian cells and controls many cellular mechanisms such as gene transcription, ion transport, and protein phosphorylation (13). Inactive PKA is a heterotetramer composed of a regulatory subunit (R) dimer and a catalytic subunit (C) dimer. In this inactive state, the pseudosubstrate sequences on the R subunits block the active sites on the C subunits. Three C subunit isoforms (C-α, C-β, and C-γ) and two families of the regulatory subunits (RI and RII) with distinct cAMP binding properties have been identified. Upon binding of cAMP to the R subunits, the auto-inhibitory contact is eased and active monomeric C subunits are released. PKA shares substrate specificity with Akt (PKB) and PKC, which are characterized by an arginine at position -3 relative to the phosphorylated serine or threonine residue (14). PKA phosphorylation is involved in the regulation of Ca2+ channels, including Cav1.1 in skeletal muscle and Cav1.2 in the heart (reviewed in 15).

  1. Hovnanian, A. (2007) Subcell Biochem 45, 337-63.
  2. Odermatt, A. et al. (1996) Nat Genet 14, 191-4.
  3. de Smedt, H. et al. (1991) J Biol Chem 266, 7092-5.
  4. Hawkins, C. et al. (1995) Mol Cell Biochem 142, 131-8.
  5. Viner, R.I. et al. (1999) Biochem J 340 ( Pt 3), 657-69.
  6. Kirchberber, M.A. et al. (1975) Recent Adv Stud Cardiac Struct Metab 5, 103-15.
  7. Fujii, J. et al. (1991) J Biol Chem 266, 11669-75.
  8. Tada, M. and Kirchberger, M.A. Recent Adv Stud Cardiac Struct Metab 11, 265-72.
  9. Traaseth, N.J. et al. (2008) Biochemistry 47, 3-13.
  10. Bhupathy, P. et al. (2007) J Mol Cell Cardiol 42, 903-11.
  11. Hagemann, D. and Xiao, R.P. (2002) Trends Cardiovasc Med 12, 51-6.
  12. Mattiazzi, A. et al. (2005) Cardiovasc Res 68, 366-75.
  13. Montminy, M. (1997) Annu Rev Biochem 66, 807-22.
  14. Dell'Acqua, M.L. and Scott, J.D. (1997) J Biol Chem 272, 12881-4.
  15. Dai, S. et al. (2009) Physiol Rev 89, 411-52.

Background References

    Trademarks and Patents

    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information.

    限制使用

    除非 CST 的合法授书代表以书面形式书行明确同意,否书以下条款适用于 CST、其关书方或分书商提供的书品。 任何书充本条款或与本条款不同的客书条款和条件,除非书 CST 的合法授书代表以书面形式书独接受, 否书均被拒书,并且无效。

    专品专有“专供研究使用”的专专或专似的专专声明, 且未专得美国食品和专品管理局或其他外国或国内专管机专专专任何用途的批准、准专或专可。客专不得将任何专品用于任何专断或治专目的, 或以任何不符合专专声明的方式使用专品。CST 专售或专可的专品提供专作专最专用专的客专,且专用于研专用途。将专品用于专断、专防或治专目的, 或专专售(专独或作专专成)或其他商专目的而专专专品,均需要 CST 的专独专可。客专:(a) 不得专独或与其他材料专合向任何第三方出售、专可、 出借、捐专或以其他方式专专或提供任何专品,或使用专品制造任何商专专品,(b) 不得复制、修改、逆向工程、反专专、 反专专专品或以其他方式专专专专专品的基专专专或技专,或使用专品开专任何与 CST 的专品或服专专争的专品或服专, (c) 不得更改或专除专品上的任何商专、商品名称、徽专、专利或版专声明或专专,(d) 只能根据 CST 的专品专售条款和任何适用文档使用专品, (e) 专遵守客专与专品一起使用的任何第三方专品或服专的任何专可、服专条款或专似专专

    Revision 1
    #8575

    Calcium Ion Regulation Antibody Sampler Kit

    Calcium Ion Regulation Antibody Sampler Kit: Image 1 Expand Image
    使用 ATP2A1/SERCA1 (D54G12) Rabbit mAb 对人骨骼肌和小鼠骨骼肌细胞提取物进行蛋白质印迹分析。
    Calcium Ion Regulation Antibody Sampler Kit: Image 2 Expand Image
    使用 Phospholamban (D9W8M) Rabbit mAb 对小鼠心脏细胞和 16 个月大的对照 (WKY) 和自发性高血压 (SHR) 大鼠心脏细胞提取物进行蛋白质印迹分析。
    Calcium Ion Regulation Antibody Sampler Kit: Image 3 Expand Image
    使用 Phospho-PKA C (Thr197) (D45D3) Rabbit mAb(上图)或 PKA C-α Antibody #4782(下图)对未经或经 λ-磷酸酶处理的 NIH/3T3 细胞提取物进行蛋白质印迹分析。
    Calcium Ion Regulation Antibody Sampler Kit: Image 4 Expand Image
    使用 PKA C-α (D38C6) Rabbit mAb(上图)或 α-Actinin (D6F6) XP® Rabbit mAb #6487(下图)对对照 293T 细胞(泳道 1 )或 PKA C-a 敲除型 293T 细胞(泳道 2)提取物进行蛋白质印迹分析。PKA C-α 敲除型 293T 细胞中没有信号,这证实了该抗体对 PKA C-α 的特异性。
    Calcium Ion Regulation Antibody Sampler Kit: Image 5 Expand Image
    一抗与靶标蛋白结合之后,与偶联 HRP 的二抗形成复合体。添加 LumiGLO®,在酶催化分解期间发光。
    Calcium Ion Regulation Antibody Sampler Kit: Image 6 Expand Image
    使用 Phospho-Phospholamban (Ser16/Thr17) Antibody(左图)、Phospholamban Antibody #8495(中间)或 GAPDH (14C10) Rabbit mAb #2118(右图)对 16 个月大的对照 (WKY) 和自发性高血压 (SHR) 大鼠心脏细胞提取物进行蛋白质印迹分析。
    Calcium Ion Regulation Antibody Sampler Kit: Image 7 Expand Image
    使用 ATP2A2/SERCA2 (D51B11) Rabbit mAb 对不同细胞类型的提取物进行蛋白质印迹分析。
    Calcium Ion Regulation Antibody Sampler Kit: Image 8 Expand Image
    使用 PKA C-α (D38C6) Rabbit mAb 对 HeLa、C6 和 COS-7 细胞提取物进行蛋白质印迹分析。
    Calcium Ion Regulation Antibody Sampler Kit: Image 9 Expand Image
    使用 ATP2A2/SERCA2 (D51B11) Rabbit mAb #9580(绿色)和 COX IV (4D11-B3-E8) Mouse mAb #11967(红色)对 Hela 细胞进行共聚焦免疫荧光分析。在用 Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 封闭游离二抗结合位点后,随后用 PDI (C81H6) Rabbit mAb (Alexa Fluor® 594 Conjugate) #8615(伪彩蓝色)标记该细胞。样品用 ProLong® Gold Antifade Reagent with DAPI #8961 (伪彩绿色)封装。